F



i



v



e



-



gr



ea



t
蓝桥杯历届试题分考场(DFS)

问题 1874: [蓝桥杯][2017年第八届真题]分考场

时间限制: 1Sec 内存限制: 128MB 提交: 62 解决: 12

题目描述
n个人参加某项特殊考试。
为了公平,要求任何两个认识的人不能分在同一个考场。
求是少需要分几个考场才能满足条件。
输入
第一行,一个整数n(1<n<100),表示参加考试的人数。
第二行,一个整数m,表示接下来有m行数据
以下m行每行的格式为:两个整数a,b,用空格分开 (1<=a,b<=n) 表示第a个人与第b个人认识。
输出
一行一个整数,表示最少分几个考场。
样例输入
5
8
1 2
1 3
1 4
2 3
2 4
2 5
3 4
4 5
样例输出
4

思路:可以抽象为无向图染色问题。相邻顶点不能染相同颜色,问至少要用多少种颜色。

用DFS搜搜搜。
假设 n 个人需要 kcs 个考场 ,先在 kcs 个考场 安排n 个人 如果安排不下 再增加考场数。
通过DFS +剪枝 从所有可能情况中得到最小考场数。

#include<stdio.h>
#include<string.h>
#define N 301
#define min(a,b) a>b?b:a 
int gxb[N][N];//关系表 
int p[N][N];// 房间状态 
int num=N,n;
void DFS(int x,int kcs)//x 代表当前安排了多少个人 kcs 代表考场数
{  if(kcs>=num)return;//剪子 
  if(x==n+1){num=min(num,kcs);return;}//如果已经安排了n个人,进行判断 
     int j,k;
    for(j=1;j<=kcs;j++)//枚举考场
   { k=0;
    while(p[j][k]&&!gxb[x][p[j][k]])k++;//找到一个空位 并且与该考场人无关系 
    if(p[j][k]==0)p[j][k]=x,DFS(x+1,kcs),p[j][k]=0;//满足条件 进行下一考生 
   }                                    //回溯 
     p[j][0]=x;
     DFS(x+1,kcs+1);// 如果所有房间都不满足条件 增加房间 
     p[j][0]=0;//回溯 
}
int main()
{
    int m,i,s1,s2;
    memset(gxb,0,sizeof(gxb));
    memset(p,0,sizeof(p));
    scanf("%d\n%d",&n,&m);
    for(i=1;i<=m;i++)
    { scanf("%d%d",&s1,&s2);
     gxb[s1][s2]=gxb[s2][s1]=1;//建关系 
    }
      DFS(1,1);
    printf("%d\n",num);
    return 0;
}


题目测试链接:http://www.dotcpp.com/oj/problem1874.html